Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1.

نویسندگان

  • Takamitsu Miyayama
  • Kazuo T Suzuki
  • Yasumitsu Ogra
چکیده

Copper (Cu) is the active center of some enzymes because of its redox-active property, although that property could have harmful effects. Because of this, cells have strict regulation/detoxification systems for this metal. In this study, multi-disciplinary approaches, such as speciation and elemental imaging of Cu, were applied to reveal the detoxification mechanisms for Cu in cells bearing a defect in Cu-regulating genes. Although Cu concentration in metallothionein (MT)-knockout cells was increased by the knockdown of the Cu chaperone, Atox1, the concentrations of the Cu influx pump, Ctr1, and another Cu chaperone, Ccs, were paradoxically increased; namely, the cells responded to the Cu deficiency despite the fact that cellular Cu concentration was actually increased. Cu imaging showed that the elevated Cu was compartmentalized in cytoplasmic vesicles. Together, the results point to the novel roles of MT and cytoplasmic vesicles in the detoxification of Cu in mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of antioxidant-1 in extracellular superoxide dismutase function and expression.

The extracellular superoxide dismutase (ecSOD or SOD3) is a copper-containing enzyme which is highly expressed in the vasculature. Copper-containing enzymes require copper chaperones for their activity however the chaperone which delivers copper to SOD3 has not previously been defined. Atox1 is a copper chaperone proposed to deliver copper to the trans-Golgi network. Because SOD3 is secreted vi...

متن کامل

Knockdown of copper chaperone antioxidant-1 by RNA interference inhibits copper-stimulated proliferation of non-small cell lung carcinoma cells

Copper is required for cell proliferation and tumor angiogenesis. Cellular copper metabolism is regulated by a network of copper transporters and chaperones. Antioxidant-1 (ATOX1) is a cytosolic copper chaperone important for intracellular copper transport, which plays a role in the regulation of cell proliferation by functioning as a transcription factor in cell growth signal-transduction path...

متن کامل

The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution

Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Re...

متن کامل

Copper binding modulates the platination of human copper chaperone Atox1 by antitumor trans-platinum complexes.

The transport system of platinum-based anticancer agents is crucial for drug sensitivity. Increasing evidence indicates that the copper transport system is also involved in the cellular influx and efflux of platinum drugs. The copper chaperone Atox1 has been shown to bind to cisplatin in vitro and in cells. Previous results reveal that copper binding promotes the reaction between Atox1 and cisp...

متن کامل

Conserved residue modulates copper-binding properties through structural dynamics in human copper chaperone Atox1.

The human copper chaperone Atox1 plays a central role in the transport of copper in cells. It has been reported that the conserved residue Lys60 contributes to the heterocomplex stability of Atox1 with its target protein ATPase, and that the K60A mutation could diminish the copper transfer. In this work, we carried out the structure determination and dynamic analysis of Atox1 with the K60A muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicology and applied pharmacology

دوره 237 2  شماره 

صفحات  -

تاریخ انتشار 2009